In this post, I will collect all the useful resources to do Machine Learning, enter the Kaggle world and get good predictions !!
Data Preprocessing :
# Importing the libraries
# Importing the datasetimport numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
# Splitting the dataset into the Training set and Test setfrom sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Feature Scalingfrom sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
# Encoding categorical datafrom sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features=[0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
# Missing datafrom sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
Models :
Regression:
# Decision Tree Regression
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X, y)
# RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=300, random_state=0)
regressor.fit(X, y)
Classification:
# SVM classifier
from sklearn.svm import SVC
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(X_train, y_train)
# Random Forest classifier
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(X_train, y_train)
# KNN
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(X_train, y_train)
# Decision tree classifier
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier.fit(X_train, y_train)
# XGboost
from xgboost import XGBClassifier
classifier = XGBClassifier()
classifier.fit(X_train, y_train)
To be continued
ReplyDeleteLooking for reliable garage door repair in Odenton, MD? Our expert technicians provide fast and efficient services to address all your garage door needs. Whether it's a broken spring, malfunctioning opener, misaligned tracks, or damaged panels, we’ve got you covered. We pride ourselves on delivering top-notch repairs using high-quality parts, ensuring your garage door operates smoothly and safely.
With same-day service availability and affordable pricing, we’re here to restore convenience and security to your home. Trust our experienced team to handle repairs for all makes and models of garage doors. Contact us today for professional garage door repair Odenton MD! Satisfaction guaranteed.