728x90 AdSpace

Friday, November 30, 2018

Machine Learning : Enter the kaggle world From Zero To Hero

In this post, I will collect all the useful resources to do Machine Learning, enter the Kaggle world and get good predictions !!



Data Preprocessing :

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features=[0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
# Missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
Models :
Regression:

Decision Tree Regression
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X, y)
RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=300, random_state=0)
regressor.fit(X, y)
Classification:

SVM classifier
from sklearn.svm import SVC
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(X_train, y_train)
Random Forest classifier
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(X_train, y_train)
KNN
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(X_train, y_train)
Decision tree classifier
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier.fit(X_train, y_train)
XGboost
from xgboost import XGBClassifier
classifier = XGBClassifier()
classifier.fit(X_train, y_train)
To be continued
  • Blogger Comments
  • Facebook Comments

1 comments:


  1. Looking for reliable garage door repair in Odenton, MD? Our expert technicians provide fast and efficient services to address all your garage door needs. Whether it's a broken spring, malfunctioning opener, misaligned tracks, or damaged panels, we’ve got you covered. We pride ourselves on delivering top-notch repairs using high-quality parts, ensuring your garage door operates smoothly and safely.

    With same-day service availability and affordable pricing, we’re here to restore convenience and security to your home. Trust our experienced team to handle repairs for all makes and models of garage doors. Contact us today for professional garage door repair Odenton MD! Satisfaction guaranteed.

    ReplyDelete

Item Reviewed: Machine Learning : Enter the kaggle world From Zero To Hero Rating: 5 Reviewed By: Unknown
Scroll to Top